Sample-efficient reinforcement learning for CERN accelerator control
V. Kain1, S. Hirlander1, B. Goddard1, F. M. Velotti1, G. Z. Della Porta1, N. Bruchon2, G. Valentino3 1CERN, 2University of Trieste, 3University of Malta Physical Review Accelerators and Beams Abstract Numerical optimization algorithms are already established tools to increase and stabilize the performance of particle accelerators. These algorithms have many advantages, are available out of the box, and can be adapted to a wide range of optimization problems in accelerator operation....