T. Boltz, M. Brosi, E. Bründermann, B. Haerer, P. Kaiser, C. Pohl, P. Schreiber, M. Yan,T. Asfour, A.-S. Müller

Karlsruhe Insitute of Technology KIT

10th International Particle Accelerator Conference

Abstract

The operation of ring-based synchrotron light sourceswith short electron bunches increases the emission of co-herent synchrotron radiation (CSR) in the THz frequencyrange. However, the micro-bunching instability resultingfrom self-interaction of the bunch with its own radiationfield limits stable operation with constant intensity of CSRemission to a particular threshold current. Above this thresh-old, the longitudinal charge distribution and thus the emittedradiation vary rapidly and continuously. Therefore, a fastand adaptive feedback system is the appropriate approach tostabilize the dynamics and to overcome the limitations givenby the instability. In this contribution, we discuss first effortstowards a longitudinal feedback design that acts on the RFsystem of the KIT storage ring KARA (Karlsruhe ResearchAccelerator) and aims for stabilization of the emitted THzradiation. Our approach is based on methods of adaptive con-trol that were developed in the field of reinforcement learningand have seen great success in other fields of research overthe past decade. We motivate this particular approach andcomment on different aspects of its implementation.

Read the paper: http://jacow.org/ipac2019/papers/mopgw017.pdf

Contact: Tobias Boltz