Plot of the reward received by the agent versus step number.

Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra

F. H. O’Shea1, N. Bruchon2, G. Gaio1 1Elettra Sincrotrone Trieste, 2University of Trieste Physical Review Accelerators and Beams Abstract In this article we report on the application of a model-free reinforcement learning method to the optimization of accelerator systems. We simplify a policy gradient algorithm to accelerator control from sophisticated algorithms that have recently been demonstrated to solve complex dynamic problems. After outlining a theoretical basis for the functioning of the algorithm, we explore the small hyperparameter space to develop intuition about said parameters using a simple number-guess environment....

December 21, 2020 · 160 words · RL4AA Collaboration
A schematic overview of theAE-DYNAapproach used in this paper.

Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL

S. Hirlaender1, N. Bruchon2 1University of Salzburg, 2University of Trieste arXiv Abstract Reinforcement learning holds tremendous promise in accelerator controls. The primary goal of this paper is to show how this approach can be utilised on an operational level on accelerator physics problems. Despite the success of model-free reinforcement learning in several domains, sample-efficiency still is a bottle-neck, which might be encompassed by model-based methods. We compare well-suited purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system....

December 17, 2020 · 158 words · RL4AA Collaboration
Simple scheme of the FERMI FEL seed laser alignment set up.

Basic Reinforcement Learning Techniques to Control the Intensity of a Seeded Free-Electron Laser

N. Bruchon1, G. Fenu1, G. Gaio2, M. Lonza2, F. H. O’Shea2, F. A. Pellegrino1, E. Salvato1 1University of Trieste, 2Elettra Sincrotrone Trieste Electronics Abstract Optimal tuning of particle accelerators is a challenging task. Many different approaches have been proposed in the past to solve two main problems—attainment of an optimal working point and performance recovery after machine drifts. The most classical model-free techniques (e.g., Gradient Ascent or Extremum Seeking algorithms) have some intrinsic limitations....

May 9, 2020 · 206 words · RL4AA Collaboration
Simple scheme of the EOS laser alignment set up.

Toward the Application of Reinforcement Learning to the Intensity Control of a Seeded Free-Electron Laser

N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino, E. Salvato University of Trieste 23rd International Conference on Mechatronics Technology Abstract The optimization of particle accelerators is a challenging task, and many different approaches have been proposed in years, to obtain an optimal tuning of the plant and to keep it optimally tuned despite drifts or disturbances. Indeed, the classical model-free approaches (such as Gradient Ascent or Extremum Seeking algorithms) have intrinsic limitations....

October 23, 2019 · 222 words · RL4AA Collaboration
Scheme of the FERMI FEL seed laser alignmentset up

Free-electron Laser Optimization with Reinforcement Learning

N. Bruchon1, G. Gaio2, G. Fenu1, M. Lonza2, F. A. Pellegrino1, E. Salvato1 1University of Trieste, 2Elettra Sincrotrone Trieste 17th International Conference on Accelerator and Large Experimental Physics Control Systems Abstract Reinforcement Learning (RL) is one of the most promis-ing techniques in Machine Learning because of its modestcomputational requirements with respect to other algorithms.RL uses an agent that takes actions within its environmentto maximize a reward related to the goal it is designed toachieve....

October 5, 2019 · 164 words · RL4AA Collaboration