Plot of the reward received by the agent versus step number.

Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra

F. H. O’Shea1, N. Bruchon2, G. Gaio1 1Elettra Sincrotrone Trieste, 2University of Trieste Physical Review Accelerators and Beams Abstract In this article we report on the application of a model-free reinforcement learning method to the optimization of accelerator systems. We simplify a policy gradient algorithm to accelerator control from sophisticated algorithms that have recently been demonstrated to solve complex dynamic problems. After outlining a theoretical basis for the functioning of the algorithm, we explore the small hyperparameter space to develop intuition about said parameters using a simple number-guess environment. Finally, we demonstrate the algorithm optimizing both a free-electron laser and an accelerator-based terahertz source in-situ. The algorithm is applied to different accelerator control systems and optimizes the desired signals in a few hundred steps without any domain knowledge using up to five control parameters. In addition, the algorithm shows modest tolerance to accelerator fault conditions without any special preparation for such conditions. ...

December 21, 2020 · 160 words · RL4AA Collaboration
A schematic overview of theAE-DYNAapproach used in this paper.

Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL

S. Hirlaender1, N. Bruchon2 1University of Salzburg, 2University of Trieste arXiv Abstract Reinforcement learning holds tremendous promise in accelerator controls. The primary goal of this paper is to show how this approach can be utilised on an operational level on accelerator physics problems. Despite the success of model-free reinforcement learning in several domains, sample-efficiency still is a bottle-neck, which might be encompassed by model-based methods. We compare well-suited purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system. We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the asymptotic performance of the model-free method is slightly superior. The model-based algorithm is implemented in a DYNA-style using an uncertainty aware model, and the model-free algorithm is based on tailored deep Q-learning. In both cases, the algorithms were implemented in a way, which presents increased noise robustness as omnipresent in accelerator control problems. ...

December 17, 2020 · 158 words · RL4AA Collaboration
Simple scheme of the FERMI FEL seed laser alignment set up.

Basic Reinforcement Learning Techniques to Control the Intensity of a Seeded Free-Electron Laser

N. Bruchon1, G. Fenu1, G. Gaio2, M. Lonza2, F. H. O’Shea2, F. A. Pellegrino1, E. Salvato1 1University of Trieste, 2Elettra Sincrotrone Trieste Electronics Abstract Optimal tuning of particle accelerators is a challenging task. Many different approaches have been proposed in the past to solve two main problems—attainment of an optimal working point and performance recovery after machine drifts. The most classical model-free techniques (e.g., Gradient Ascent or Extremum Seeking algorithms) have some intrinsic limitations. To overcome those limitations, Machine Learning tools, in particular Reinforcement Learning (RL), are attracting more and more attention in the particle accelerator community. We investigate the feasibility of RL model-free approaches to align the seed laser, as well as other service lasers, at FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste. We apply two different techniques—the first, based on the episodic Q-learning with linear function approximation, for performance optimization; the second, based on the continuous Natural Policy Gradient REINFORCE algorithm, for performance recovery. Despite the simplicity of these approaches, we report satisfactory preliminary results, that represent the first step toward a new fully automatic procedure for the alignment of the seed laser to the electron beam. Such an alignment is, at present, performed manually. ...

May 9, 2020 · 206 words · RL4AA Collaboration