Toward the Application of Reinforcement Learning to the Intensity Control of a Seeded Free-Electron Laser
N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino, E. Salvato University of Trieste 23rd International Conference on Mechatronics Technology Abstract The optimization of particle accelerators is a challenging task, and many different approaches have been proposed in years, to obtain an optimal tuning of the plant and to keep it optimally tuned despite drifts or disturbances. Indeed, the classical model-free approaches (such as Gradient Ascent or Extremum Seeking algorithms) have intrinsic limitations....