AWAKE beamline showing location of the matching devices (actions) and the observation BTV.

Towards automatic setup of 18 MeV electron beamline using machine learning

F. M. Velotti1, B. Goddard1, V. Kain1, R. Ramjiawan1, G. Z. Della Porta1 and S. Hirlaender2 1CERN, 2University of Salzburg Machine Learning: Science and Technology Abstract To improve the performance-critical stability and brightness of the electron bunch at injection into the proton-driven plasma wakefield at the AWAKE CERN experiment, automation approaches based on unsupervised machine learning (ML) were developed and deployed. Numerical optimisers were tested together with different model-free reinforcement learning (RL) agents....

April 27, 2023 · 189 words · RL4AA Collaboration
Overview of the orbit correction method.

Orbit Correction Based on Improved Reinforcement Learning Algorithm

X. Chen, Y. Jia, X. Qi, Z. Wang, Y. He Chinese Academy of Sciences Physical Review Accelerators and Beams Abstract Recently, reinforcement learning (RL) algorithms have been applied to a wide range of control problems in accelerator commissioning. In order to achieve efficient and fast control, these algorithms need to be highly efficient, so as to minimize the online training time. In this paper, we incorporated the beam position monitor trend into the observation space of the twin delayed deep deterministic policy gradient (TD3) algorithm and trained two different structure agents, one based on physical prior knowledge and the other using the original TD3 network architecture....

April 13, 2023 · 327 words · RL4AA Collaboration
Schema of the parameters’role within the learning loop.

Optimizing a superconducting radio-frequency gun using deep reinforcement learning

D. Meier1, L. V. Ramirez1, J. Völker1, J. Viefhaus1, B. Sick2, G. Hartmann1 1Helmholtz-Zentrum Berlin, 2University of Kassel Physical Review Accelerators and Beams Abstract Superconducting photoelectron injectors are promising for generating highly brilliant pulsed electron beams with high repetition rates and low emittances. Experiments such as ultrafast electron diffraction, experiments at the Terahertz scale, and energy recovery linac applications require such properties. However, optimizing the beam properties is challenging due to the high number of possible machine parameter combinations....

October 28, 2022 · 157 words · RL4AA Collaboration
Episodes from the best NAF2 agent and the PI controller with the same initial states and with a varying additive Gaussian action noise with zero mean and standard deviation as a percentage of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.

Application of reinforcement learning in the LHC tune feedback

L. Grech1, G. Valentino1, D. Alves2 and Simon Hirlaender3 1University of Malta, 2CERN, 3University of Salzburg Frontiers in Physics Abstract The Beam-Based Feedback System (BBFS) was primarily responsible for correcting the beam energy, orbit and tune in the CERN Large Hadron Collider (LHC). A major code renovation of the BBFS was planned and carried out during the LHC Long Shutdown 2 (LS2). This work consists of an explorative study to solve a beam-based control problem, the tune feedback (QFB), utilising state-of-the-art Reinforcement Learning (RL)....

September 7, 2022 · 168 words · RL4AA Collaboration
Schematic view of the GMPS control environment.

Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster

J. St. John1, C. Herwig1, D. Kafkes1, J. Mitrevski1, W. A. Pellico1, G. N. Perdue1, A. Quintero-Parra1, B. A. Schupbach1, K. Seiya1, N. Tran1, M. Schram2, J. M. Duarte3, Y. Huang4, R. Keller5 1Fermi National Accelerator Laboratory, 2Thomas Jefferson National Accelerator Laboratory, 3University of California San Diego, 4Pacific Northwest National Laboratory, 5Columbia University Physical Review Accelerators and Beams Abstract We describe a method for precisely regulating the gradient magnet power supply (GMPS) at the Fermilab Booster accelerator complex using a neural network trained via reinforcement learning....

October 18, 2021 · 194 words · RL4AA Collaboration
Hardware solution  for RL control.

Accelerated Deep Reinforcement Learning for Fast Feedback of Beam Dynamics at KARA

W. Wang1, M. Caselle1, T. Boltz1, E. Blomley1, M. Brosi1, T. Dritschler1, A. Ebersoldt1, A. Kopmann1, A. Santamaria Garcia1, P. Schreiber1, E. Bründermann1, M. Weber1, A.-S. Müller1, Y. Fang2 1Karlsruhe Insitute of Technology KIT, 2Northwestern Polytechnical University IEEE Transactions on Nuclear Science Abstract Coherent synchrotron radiation (CSR) is generated when the electron bunch length is in the order of the magnitude of the wavelength of the emitted radiation. The self-interaction of short electron bunches with their own electromagnetic fields changes the longitudinal beam dynamics significantly....

May 27, 2021 · 260 words · RL4AA Collaboration
Plot of the reward received by the agent versus step number.

Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra

F. H. O’Shea1, N. Bruchon2, G. Gaio1 1Elettra Sincrotrone Trieste, 2University of Trieste Physical Review Accelerators and Beams Abstract In this article we report on the application of a model-free reinforcement learning method to the optimization of accelerator systems. We simplify a policy gradient algorithm to accelerator control from sophisticated algorithms that have recently been demonstrated to solve complex dynamic problems. After outlining a theoretical basis for the functioning of the algorithm, we explore the small hyperparameter space to develop intuition about said parameters using a simple number-guess environment....

December 21, 2020 · 160 words · RL4AA Collaboration
The RL paradigm as applied to particle accelerator control, showing the example of trajectory correction.

Sample-efficient reinforcement learning for CERN accelerator control

V. Kain1, S. Hirlander1, B. Goddard1, F. M. Velotti1, G. Z. Della Porta1, N. Bruchon2, G. Valentino3 1CERN, 2University of Trieste, 3University of Malta Physical Review Accelerators and Beams Abstract Numerical optimization algorithms are already established tools to increase and stabilize the performance of particle accelerators. These algorithms have many advantages, are available out of the box, and can be adapted to a wide range of optimization problems in accelerator operation....

December 1, 2020 · 185 words · RL4AA Collaboration
Simple scheme of the FERMI FEL seed laser alignment set up.

Basic Reinforcement Learning Techniques to Control the Intensity of a Seeded Free-Electron Laser

N. Bruchon1, G. Fenu1, G. Gaio2, M. Lonza2, F. H. O’Shea2, F. A. Pellegrino1, E. Salvato1 1University of Trieste, 2Elettra Sincrotrone Trieste Electronics Abstract Optimal tuning of particle accelerators is a challenging task. Many different approaches have been proposed in the past to solve two main problems—attainment of an optimal working point and performance recovery after machine drifts. The most classical model-free techniques (e.g., Gradient Ascent or Extremum Seeking algorithms) have some intrinsic limitations....

May 9, 2020 · 206 words · RL4AA Collaboration
Example of a simulation run.

Orbit Correction Studies Using Neural Networks

E. Meier, Y.-R. E. Tan, G. S. LeBlanc Australian Synchrotron 3rd International Particle Accelerator Conference Abstract This paper reports the use of neural networks for orbitcorrection at the Australian Synchrotron Storage Ring. Theproposed system uses two neural networks in an actor-criticscheme to model a long term cost function and computeappropriate corrections. The system is entirely based onthe history of the beam position and the actuators, i.e. thecorrector magnets, in the storage ring....

May 20, 2012 · 165 words · RL4AA Collaboration