Online training of NAF Agent of AWAKE electronline trajectory steering in the horizontal plane.

Test of Machine Learning at the CERN LINAC4

V. Kain1, N. Bruchon1, S. Hirlander1, N. Madysa1, I. Vojskovic1, P. Skowronski1, G. Valentino2 1CERN, 2University of Malta 61st ICFA ABDW on High-Intensity and High-Brightness Hadron Beams Abstract The CERN H−linear accelerator, LINAC4, served as atest bed for advanced algorithms during the CERN LongShutdown 2 in the years 2019/20. One of the main goals wasto show that reinforcement learning with all its benefits canbe used as a replacement for numerical optimization and asa complement to classical control in the accelerator controlcontext. Many of the algorithms used were prepared before-hand at the electron line of the AWAKE facility to makethe best use of the limited time available at LINAC4. Anoverview of the algorithms and concepts tested at LINAC4and AWAKE will be given and the results discussed. ...

October 4, 2021 · 132 words · RL4AA Collaboration
The RL paradigm as applied to particle accelerator control, showing the example of trajectory correction.

Sample-efficient reinforcement learning for CERN accelerator control

V. Kain1, S. Hirlander1, B. Goddard1, F. M. Velotti1, G. Z. Della Porta1, N. Bruchon2, G. Valentino3 1CERN, 2University of Trieste, 3University of Malta Physical Review Accelerators and Beams Abstract Numerical optimization algorithms are already established tools to increase and stabilize the performance of particle accelerators. These algorithms have many advantages, are available out of the box, and can be adapted to a wide range of optimization problems in accelerator operation. The next boost in efficiency is expected to come from reinforcement learning algorithms that learn the optimal policy for a certain control problem and hence, once trained, can do without the time-consuming exploration phase needed for numerical optimizers. To investigate this approach, continuous model-free reinforcement learning with up to 16 degrees of freedom was developed and successfully tested at various facilities at CERN. The approach and algorithms used are discussed and the results obtained for trajectory steering at the AWAKE electron line and LINAC4 are presented. The necessary next steps, such as uncertainty aware model-based approaches, and the potential for future applications at particle accelerators are addressed. ...

December 1, 2020 · 185 words · RL4AA Collaboration