
Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster
J. St. John1, C. Herwig1, D. Kafkes1, J. Mitrevski1, W. A. Pellico1, G. N. Perdue1, A. Quintero-Parra1, B. A. Schupbach1, K. Seiya1, N. Tran1, M. Schram2, J. M. Duarte3, Y. Huang4, R. Keller5 1Fermi National Accelerator Laboratory, 2Thomas Jefferson National Accelerator Laboratory, 3University of California San Diego, 4Pacific Northwest National Laboratory, 5Columbia University Physical Review Accelerators and Beams Abstract We describe a method for precisely regulating the gradient magnet power supply (GMPS) at the Fermilab Booster accelerator complex using a neural network trained via reinforcement learning....